3.750 \(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=378 \[ -\frac {4 a \left (a^2 (-C)+2 A b^2+3 b^2 C\right ) \tan (c+d x)}{3 b d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (2 a^2 C+3 a b (A+C)-b^2 (A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^2 d \sqrt {a+b} \left (a^2-b^2\right )}-\frac {4 a \left (a^2 (-C)+2 A b^2+3 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^3 d (a-b) (a+b)^{3/2}} \]

[Out]

-4/3*a*(2*A*b^2-C*a^2+3*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b
*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/(a-b)/b^3/(a+b)^(3/2)/d+2/3*(2*a^2*C+3*a*b*(A+C)-
b^2*(A+3*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a
+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/(a^2-b^2)/d/(a+b)^(1/2)-2/3*(A*b^2+C*a^2)*tan(d*x+c)/b/(a^2-b^2
)/d/(a+b*sec(d*x+c))^(3/2)-4/3*a*(2*A*b^2-C*a^2+3*C*b^2)*tan(d*x+c)/b/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.69, antiderivative size = 378, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4081, 4003, 4005, 3832, 4004} \[ -\frac {4 a \left (a^2 (-C)+2 A b^2+3 b^2 C\right ) \tan (c+d x)}{3 b d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (2 a^2 C+3 a b (A+C)-b^2 (A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^2 d \sqrt {a+b} \left (a^2-b^2\right )}-\frac {4 a \left (a^2 (-C)+2 A b^2+3 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^3 d (a-b) (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-4*a*(2*A*b^2 - a^2*C + 3*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)
/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*b^3*(a + b)
^(3/2)*d) + (2*(2*a^2*C + 3*a*b*(A + C) - b^2*(A + 3*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]
]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])
/(3*b^2*Sqrt[a + b]*(a^2 - b^2)*d) - (2*(A*b^2 + a^2*C)*Tan[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^
(3/2)) - (4*a*(2*A*b^2 - a^2*C + 3*b^2*C)*Tan[c + d*x])/(3*b*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4081

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)),
 x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1) -
 (A*b^2 + a^2*C + b*(A*b + b*C)*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1
] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx &=-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {\sec (c+d x) \left (-\frac {3}{2} a b (A+C)+\frac {1}{2} \left (A b^2-2 a^2 C+3 b^2 C\right ) \sec (c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )}\\ &=-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {4 a \left (2 A b^2-a^2 C+3 b^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b \left (a^2 (3 A+C)+b^2 (A+3 C)\right )+\frac {1}{2} a \left (2 A b^2-\left (a^2-3 b^2\right ) C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )^2}\\ &=-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {4 a \left (2 A b^2-a^2 C+3 b^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 a \left (2 A b^2-a^2 C+3 b^2 C\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )^2}+\frac {\left (2 a^2 C+3 a b (A+C)-b^2 (A+3 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 (a-b) b (a+b)^2}\\ &=-\frac {4 a \left (2 A b^2-\left (a^2-3 b^2\right ) C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 C+3 a b (A+C)-b^2 (A+3 C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^2 (a+b)^{3/2} d}-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {4 a \left (2 A b^2-a^2 C+3 b^2 C\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 26.70, size = 759, normalized size = 2.01 \[ \frac {4 \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {\sec (c+d x)} (a \cos (c+d x)+b)^{5/2} \left (A+C \sec ^2(c+d x)\right ) \left (2 a \left (a^2 (-C)+2 A b^2+3 b^2 C\right ) \tan \left (\frac {1}{2} (c+d x)\right ) \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right ) \left (-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b\right )+b (a+b) \left (-2 a^2 C+3 a b (A+C)+b^2 (A+3 C)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 a (a+b) \left (C \left (a^2-3 b^2\right )-2 A b^2\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{3 d \left (b^3-a^2 b\right )^2 \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right )^{3/2} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}} (a+b \sec (c+d x))^{5/2} (A \cos (2 c+2 d x)+A+2 C)}+\frac {\sec (c+d x) (a \cos (c+d x)+b)^3 \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {8 a \left (a^2 C-2 A b^2-3 b^2 C\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2}+\frac {4 \left (a^2 C \sin (c+d x)+A b^2 \sin (c+d x)\right )}{3 a \left (a^2-b^2\right ) (a \cos (c+d x)+b)^2}+\frac {4 \left (a^4 C \sin (c+d x)-5 a^2 A b^2 \sin (c+d x)-5 a^2 b^2 C \sin (c+d x)+A b^4 \sin (c+d x)\right )}{3 a b \left (b^2-a^2\right )^2 (a \cos (c+d x)+b)}\right )}{d (a+b \sec (c+d x))^{5/2} (A \cos (2 c+2 d x)+A+2 C)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((b + a*Cos[c + d*x])^3*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*((-8*a*(-2*A*b^2 + a^2*C - 3*b^2*C)*Sin[c + d*x])/
(3*b^2*(a^2 - b^2)^2) + (4*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(3*a*(a^2 - b^2)*(b + a*Cos[c + d*x])^2)
 + (4*(-5*a^2*A*b^2*Sin[c + d*x] + A*b^4*Sin[c + d*x] + a^4*C*Sin[c + d*x] - 5*a^2*b^2*C*Sin[c + d*x]))/(3*a*b
*(-a^2 + b^2)^2*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(5/2)) + (4*(b
+ a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(2*a*(2*
A*b^2 - a^2*C + 3*b^2*C)*Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)*(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c +
 d*x)/2]^2) + 2*a*(a + b)*(-2*A*b^2 + (a^2 - 3*b^2)*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sq
rt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)
/(a + b)] + b*(a + b)*(-2*a^2*C + 3*a*b*(A + C) + b^2*(A + 3*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(
a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c +
d*x)/2]^2)/(a + b)]))/(3*(-(a^2*b) + b^3)^2*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(5/2)*(1 + T
an[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \sec \left (d x + c\right )^{3} + A \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + A*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x +
c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 1.79, size = 4550, normalized size = 12.04 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-1/3/d*4^(1/2)*(4*A*cos(d*x+c)*a*b^4+4*A*cos(d*x+c)^3*a^3*b^2+8*A*cos(d*x+c)^2*a^2*b^3-4*A*cos(d*x+c)^2*a*b^4-
3*A*cos(d*x+c)*a^2*b^3-4*C*cos(d*x+c)^2*a^3*b^2-6*C*cos(d*x+c)^2*a*b^4+3*C*cos(d*x+c)*a^4*b-7*C*cos(d*x+c)*a^2
*b^3+A*cos(d*x+c)^3*b^5+A*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^5+3*A*cos(d*x+c)^2*sin(d*x+c)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*a^3*b^2+3*C*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^5-5*A*cos(d*x+c)^3*a^2*b^3-4*A*cos(d*x+c)^
2*a^3*b^2-4*C*cos(d*x+c)^2*a^4*b-2*C*cos(d*x+c)*a^3*b^2+C*cos(d*x+c)^3*a^4*b-5*C*cos(d*x+c)^3*a^2*b^3+7*C*cos(
d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3+9*C*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*
b^4-4*C*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2-6*C*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*a*b^4-2*C*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2+2*C*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*a^5+3*A*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3+A*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*b^5+3*C*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^5+2*C*sin(d*x+c)*EllipticE((-1+cos(d*x+c))
/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/
2)*a^4*b+2*C*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2-6*C*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3
-6*C*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((
b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4+C*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3+6*C*sin(d*x
+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4+4*A*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4-4*A*sin(d*x+c)*Elliptic
E((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*a^2*b^3-4*A*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4-8*A*cos(d*x+c)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b
))^(1/2))*sin(d*x+c)*a^2*b^3+4*C*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))
/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^4*b-12*C*cos(d*x+c)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^3+3*A*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2+7*A*co
s(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3+5*A*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
a*b^4-4*A*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2-4*A*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*a*b^4-2*C*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^4*b-C*cos(d*x+c)*sin(d*x+c)*Elliptic
F((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*a^3*b^2-2*C*cos(d*x+c)^3*a^5+6*C*cos(d*x+c)^3*a^3*b^2+12*C*cos(d*x+c)^2*a^2*b^3+6*C*cos(d*
x+c)*a*b^4-A*cos(d*x+c)*b^5+2*C*cos(d*x+c)^2*a^5-4*A*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x
+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b
^2-4*A*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3+4*A*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+c
os(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*a^2*b^3+A*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4+2*C*sin(d*x+c)*cos(d*x+c)^2*E
llipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*a^4*b-6*C*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2-6*C*sin(d*x+c
)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^3-2*C*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^4
*b+C*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^2+6*C*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*a^2*b^3+3*C*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^4+2*C*sin(d*x+c)*cos(d*x+c)^2*E
llipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*a^5)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)/(b+a*cos(d*x+c))^2/(a-b)^2/(a+b
)^2/b^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec(c + d*x))**(5/2), x)

________________________________________________________________________________________